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Abstract. We derive an exact expression for the distribution function for the (algebraic) 
area enclosed by a plane closed random walk, using a continuous model from the start. 
Our result has a different analytical form but is numerically close to an expression for the 
same quantity of a discrete model, derived by Brereton and Butler. 

In a recent paper Brereton and Butler (1987) pointed out that topologically constrained 
polymers can be roughly represented by random walks which enclose a constant area. 
This was the motivation for an explicit derivation of the distribution function for the 
(algebraic) area enclosed by a plane closed random walk of N steps, of equal average 
length 1; see equation (4.12) of Brereton and Butler (1987). 

In view of the importance of topological problems in polymer physics we have 
studied the problem of Brereton and Butler with a different method in which a 
continuous model is used from the beginning. Our result has a different analytical 
form but is quantitatively close to the expression derived by these authors. 

First, we note that the probability density of a plane random walk has the Wiener 
integral representation 

in an obvious notation (cf Wiegel 1986 and references therein). In the limit r +  ro in 
which the end point of the walk approaches the initial position ro the 
density is 

lim p (  r, N )  = ( T N P - ' .  
I- ro 

As the constraint that the (algebraic) area which is enclosed by a trajectory 
A can be expressed analytically by 

A = ; j o  1 ( x z - y $ ) d v  dy 
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probability 

(2) 

r( v )  equals 

(3 1 
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then the desired distribution function for A is given by the path integral 

P(A, N )  = rNZ2 1;: 6[ A-: lo" ( x$- y z )  dv] 

x exp[ - Io" ($) ' d v] d( r( v)). (4) 

Of course, the delta function can be represented by a Fourier integral, which gives 
+a2 

P(A,  N )  =L 1 F(g, N )  exp(igA) dg  ( 5 )  2 r  -m 

where 

P(g, N )  = rNZ2 1,:; exp( -loN L dv) d(r(  v)) 

with 

It will be shown shortly that ( 5 )  can be evaluated by :ontour integration in the 
complex g plane and that the singularities of the function P(g, N )  are located on the 
imaginary g axis. Hence we put ig = -A, treat A as a real number and write 

The evaluation of the path integral ( 5 )  is straightforward as ( 5 )  is similar to the path 
integral for a quantum mechanical particle in a constant magnetic field. To make this 
letter more self-contained we nevertheless outline the main steps. 

The maximum contribution comes from the trajectory which is a solution of the 
Euler-Lagrange equations 

-- d2x dY - - $A/2  - 
dv  dv d v  (9) 

One finds the general solution 

x( v) = A +  C sin(4 + w o v )  ( loa)  

~ ( v ) = B - C C O S ( ~ + U ~ V )  ( lob)  

wo = $AZ2. (11) 

where 

The four real constants A, B, C, I$ follow from the condition that the trajectory passes 
through ro for v = 0 and through r, for v = N ;  later we shall take the limit rl + ro. The 
shape of the trajectory is part of a circle which has its centre in (A, B )  and which has 
a radius C. This arc is traversed with a uniform value of 

(5) + (2) = w ; c 2. 
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A simple geometric consideration shows that the arc length equals Nw0C on the one 
hand, but 

on the other hand. Hence by equating these two expressions one finds 

C = [ ( x ,  - ~ ~ ) ~ + ( y ~ - y ~ ) ~ ] ’ ” / 2  sin(iNwo) (13) 

which in principle determines the trajectory. 
Next one substitutes the explicit form of the most likely path back into (8) and 

integrates over dv. This calculation is again remarkably tedious and can be somewhat 
simplified by the use of geometrical considerations. The result is 

A standard argument for path integrals with quadratic exponentials now shows 
that the path integral 

must have the form 

where f( N )  does not depend on xo ,  y o ,  x ,  or y ,  . 
It also follows from the definition of the path integral that 

00 

G ( x l , y l , N I x o , y o ) =  [I dx’ [ dy’ G(xl,~l,N-N’~x’,y’)G(x’,y’,N’(~o,~o) 
J - m  J - m  

(16) 

for all NI such that 0 < N’  < N. Upon substitution of (15) one finds that the unknown 
function f( N )  has the property 

It is easy to verify that the solution of this functional equation is 

WO 1 
f ( N ) = ~  sin(;Nwo))’ 

Substitution of the last equation into (15) gives 

G ( X l , Y l ,  NIX0,Yo) 

- WO - 
2a1* sin(fNwo) 

WO -- [ ( x l  - x o ) 2 + ( y 1  -yo)’]  cotan(fNw,) 
21’ 
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Using this result for xo = xl , yo = y ,  and putting A = -ig again, (6) becomes 

Note that P(0, N) = 1 ,  as it should because the integral of the distribution function 
for A should be normalised to unity. Substituting the previous equation into (5) one 
finds that P(A, N )  is of the form 

where 

U 
exp(iu6) du. 

The integrand has singularities at U = nni with n = *l,  *2,. . . . Near n n i  one can 
write sinh U ~1 ( - l )” (u  - nni). For a positive value of 5 the contour of integration can 
be closed with a semicircle in the positive complex U plane. Hence Cauchy’s theorem 
gives a series for p ( 5 )  which can be summed to give 

p ( 5 )  = 7r/4 cosh2($n[). (23) 
Combination of (21) and (23) gives the final result 

P(A,  N) = [ 2N12 cosh2( %)]-I 

This analytical result for the continuous random walk model is remarkably simple. 
In order to compare with the results of Brereton and Butler (1987) for the discrete 
model we should consider P(A, N) as a function of A/ N12 for large N. Equation (24) 
starts with the value $for (A/N12) = 0 and has the asymptotic behaviour exp( -4nA/ N12) 
for (AlNl’) >> 1. The results for P(A, N) for the discrete model start with a value of 
about 0.53 and have the asymptotic behaviour exp(-aA/bN12) with ~ ~ 1 4 . 9 5  and 
b -- 0.45. As a / b  -- 10.9 is fairly close to 4 n  = 12.6 we conclude that the continuous 
random walk result (24) is a fair approximation to the distribution of the area enclosed 
by a discrete random walk. 
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